SÉRIE SENAR AR/MT - 87

TRABALHADOR NA BOVINOCULTURA DE CORTE

CONTROLE DE FORMIGAS CORTADEIRAS E CUPINS EM PASTAGEM

SERVIÇO NACIONAL DE APRENDIZAGEM RURAL

ADMINISTRAÇÃO REGIONAL DO MATO GROSSO

Normando Corral
PRESIDENTE DO CONSELHO ADMINISTRATIVO

Antônio Carlos Carvalho de Sousa Superintendente

Juliano Muniz Calçada

GERENTE ADMINISTRATIVO E FINANCEIRO

Otávio Bruno Nogueira Borges
GERENTE TÉCNICO

SÉRIE SENAR AR/MT - 87

TRABALHADOR NA BOVINOCULTURA DE CORTE

ISSN 1807-2720

ISBN 978-85-7776-090-9

CONTROLE DE FORMIGAS CORTADEIRAS E CUPINS EM PASTAGEM

ELABORADORES

José Cola Zanuncio

Engenheiro Florestal Mestre e PhD em Entomologia

Teresinha Vinha Zanuncio

Bióloga e Pós-Doutora em Entomologia

Mestre, Doutora e Pós-Doutora em Entomologia

Alício Nunes Domingues

Engenheiro Agrônomo
Especialista em Nutrição Animal
Faculdade de Agronomia e Medicina Veterinária (UFMT)

Antônio Almeida Rios

Biólogo Mestrando em Gestão e Auditoriais Ambientais

Série SENAR AR/MT – 87 Trabalhador na bovinocultura de corte Controle de formigas cortadeiras e cupins em pastagem

PRODUÇÃO EDITORIAL

LK Editora e Comércio de Bens Editoriais e Autorais Ltda.

Coordenação metodológica — Leon Enrique Kalinowski Olivera e Sérgio Restani Kalinowski Coordenação técnica — Rafaella Nantua Evangelista Giordano e Maurício Junio Gomes Revisão gramatical e de linguagem — Fabiana Ferreira da Costa e Shirley dos Santos Mendes Normatização técnica — Rosa dos Anjos Oliveira Editoração eletrônica — Carlos André e Licurgo S. Botelho Fotografia — Cidu Okubo

Desenhos – André Luiz Ribeiro dos Santos

Dados Internacionais de Catalogação na Publicação (CIP)

Zanuncio, José Cola.

Controle de formigas cortadeiras e cupins em pastagem / José Cola Zanuncio, Teresinha Vinha Zanuncio, Alício Nunes Domingues, Antônio Almeida Rios. – Brasília (DF): LK Editora, 2009.

68 p. il.; 21 cm (Série SENAR AR/MT, ISSN 1807-2720; 87)

ISBN 978-85-7776-090-9

Manejo de pastagens.
 Formiga.
 Cupim.
 Zanuncio, Teresinha Vinha.
 Domingues, Alício Nunes.
 Rios, Antônio Almeida.
 Título.

CDU: 631.585:632.7

IMPRESSO NO BRASIL

S U M Á R I O

	A	PRESENTAÇÃO	7
	IN	ITRODUÇÃO	9
		ONTROLE DE FORMIGAS CORTADEIRAS E JPINS EM PASTAGEM	11
I	CO	ONTROLAR AS FORMIGAS CORTADEIRAS	13
	1	Conheça as formigas cortadeiras	13
	2	Conheça os tipos de controle das formigas cortadeiras	26
	3	Controle quimicamente as formigas cortadeiras	29
II	CO	ONTROLAR OS CUPINS	51
	1	Conheça os cupins	52
	2	Controle os cupins	55
	В	IBLIOGRAFIA	65

A P R E S E N T A Ç Ã O

O SENAR – Administração Regional do Mato Grosso, após um levantamento de necessidades, vem definindo prioridades para a produção de cartilhas de interesse geral.

As cartilhas são recursos instrucionais de formação profissional rural e promoção social e, elaboradas segundo metodologia recomendada pela Instituição, constituem um reforço da aprendizagem adquirida pelos trabalhadores rurais após os cursos ou treinamentos promovidos pelo SENAR em todo o País.

Esta cartilha faz parte de uma série de títulos desenvolvidos por especialistas e é mais uma contribuição do SENAR AR/MT visando à melhoria da qualidade dos serviços prestados pela entidade.

CONTROLE DE FORMIGAS CORTADEIRAS E CUPINS EM PASTAGEM

INTRODUÇÃO

Esta cartilha, de maneira simples e ilustrada, trata de forma detalhada das operações imprescindíveis para controlar as formigas cortadeiras e os cupins em pastagem, desde o conhecimento das espécies de formigas cortadeiras e cupins até as formas de controle mais utilizadas.

Contém informações tecnológicas sobre os procedimentos necessários para a execução das operações no momento preciso e na sequência lógica. Trata, também, de aspectos importantes para a preservação do meio ambiente, precauções para manter a saúde e a segurança do operador e de terceiros, bem como de assuntos que possam interferir na melhoria da qualidade e produtividade do controle de formigas cortadeiras e cupins em pastagem.

CONTROLE DE FORMIGAS CORTADEIRAS E CUPINS EM PASTAGEM

O Brasil tem uma das maiores áreas utilizadas nos sistemas agrícolas e silviculturais, com grande diversidade de organismos considerados pragas com destaque para formigas cortadeiras que causam riscos econômicos em diversas culturas.

As formigas cortadeiras são encontradas desde o sul dos Estados Unidos até a região central da Argentina, exceto no Chile, algumas ilhas das Antilhas e nos pólos. Esses organismos cultivam seu próprio alimento (cultivo do fungo)

e são mais numerosos que o conjunto de todos os vertebrados do planeta. As formigas cortadeiras estão entre as pragas de maior relevância na atividade agropecuária e com danos significativos em todas as culturas, desde a implantação até a colheita.

Os cupins têm também grande potencial destrutivo e contribuem com a redução da produção pecuária. Algumas de suas espécies cortam a forragem, outras danificam raízes ou constroem ninhos na forma de montículos ocupando espaços, reduzindo o rendimento nas operações de tratos culturais e resultando em prejuízos ao produtor.

Conhecer a biologia, a forma de dispersão, de alimentação, como se alojam nos ninhos e a organização social de formigas cortadeiras e de cupins é fundamental para se estabelecer métodos de controle desses insetos com mais eficiência, menor custo e menor agressão ao ambiente e à saúde humana.

CONTROLAR AS FORMIGAS CORTADEIRAS

As formigas cortadeiras representam um dos principais inimigos de plantas cultivadas nos países tropicais e a população de um sauveiro pode causar danos consideráveis para a silvicultura, agricultura e pecuária.

O reconhecimento das espécies e a compreensão da biologia e ecologia permitem a adoção de técnicas de controle mais adequadas e com maior sucesso.

1 CONHEÇA AS FORMIGAS CORTADEIRAS

As formigas cortadeiras são conhecidas vulgarmente como "cabeçudas", "carregadeiras", "saúvas" e "quenquéns", com ampla distribuição em todo o país. Os principais gêneros *Atta* (saúva) e *Acromyrmex* (quenquém) da tribo Attini (*Myrmicinae*), no Brasil, cultivam fungos com substrato, exclusivamente vegetal.

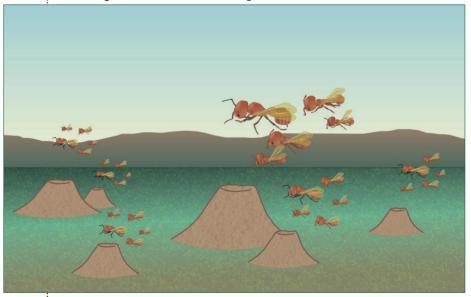
Os indivíduos das colônias de insetos sociais exercem funções em benefício da própria sociedade e dividem as tarefas e trabalhos entre si, o que explica a razão do seu sucesso.

As formigas trabalham para o bem comum e a sobrevivência da colônia. Um formigueiro adulto apresenta indivíduos permanentes e temporários. A rainha e as operárias são castas permanentes e os machos e fêmeas alados, os temporários.

DISTRIBUIÇÃO GEOGRÁFICA DAS FORMIGAS CORTADEIRAS

Algumas espécies de saúvas possuem ampla distribuição em todo o país e outras ocorrem em regiões restritas. O cultivo de grãos e pastagens pode favorecer a colonização da área por essas formigas.

Quadro 1 – Espécies de formigas cortadeiras e principais regiões de ocorrência

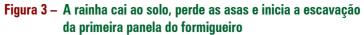

Espécie	Nome comum	Ocorrência		
Atta bisphaerica	saúva-mata-pasto	SP, RJ, MG, ES e MT		
Atta capiguara	saúva-parda	SP, MT e MG		
Atta goiana	cabeça-de-vidro	GO e MT		
Atta laevigata	cabeça-de-vidro	SP, AM, RR, PA, MA, CE, PE, AL, BA, MG, RJ, MT, ES, GO e PR		
Atta vollenweideri	saúva	RS e MS		
Acromyrmex heyeri	formiga-de-monte vermelha	PR, SC, RS e SP		
Acromyrmex landolti balzani	boca-de-cisco	SP, MG, SC, GO e MS		
Acromyrmex landolti landolti	boca-de-cisco	AM, PA e RO		
Acromyrmex landolti fracticornis	boca-de-cisco	AM, PA e RO		
Acromyrmex striatus	formiga-de-rodeio	RS e SC		

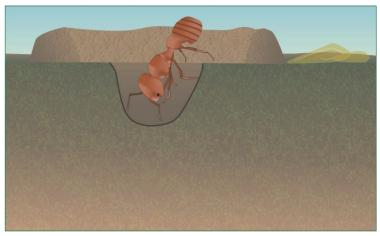
REPRODUÇÃO E FUNDAÇÃO DO FORMIGUEIRO

• Reprodução

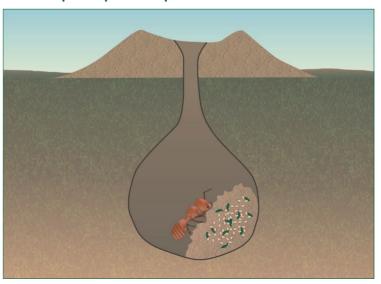
A reprodução das saúvas ocorre, somente, em formigueiros adultos, com pelo menos três anos de fundação e se repete todos os anos. A reprodução é caracterizada pelo voo nupcial, conhecido como revoada, cuja época de ocorrência varia com a região, geralmente acontece em dias claros, quentes e úmidos do começo da estação chuvosa. A ocorrência de chuvas prévias é essencial para que a revoada aconteça.

Os machos ou bitus são os primeiros a deixar o formigueiro, seguidos pelas fêmeas, chamadas tanajuras ou içás. Antes de saírem, as tanajuras cortam um pequeno pedaço da cultura do fungo e o guardam no interior de uma cavidade infrabucal; tal fração de fungo servirá de "muda" para o novo jardim fúngico a ser formado no futuro formigueiro.

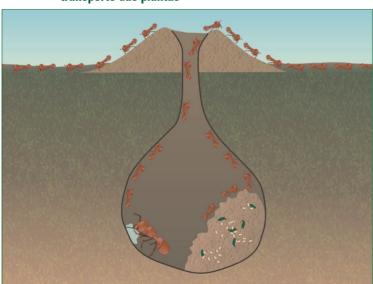

Cada fêmea copula com vários machos, cujos espermatozóides são armazenados em um órgão no interior do abdômen, chamado de espermateca; tais espermatozóides irão fecundar os óvulos, originando milhares de novas formigas durante toda a vida do formigueiro.


Figura 2 – Formigueiros adultos liberam tanajuras (fêmeas) e bitus (machos) para acasalamento em voo

Fundação do formigueiro


Quando a tanajura cai ao solo, livra-se das asas e inicia a escavação de um canal com aproximadamente 15 cm de profundidade que dá acesso a uma pequena câmara no solo (panela com cerca de 4 cm de diâmetro).

A entrada desta câmara é fechada com terra para evitar a entrada de predadores, dando origem a um novo formigueiro, onde a tanajura ou rainha inicia a postura, após cinco ou seis dias da entrada no solo.


Figura 4 — A rainha efetua a postura de ovos férteis e de alimentação para as primeiras operárias

Dois dias após a revoada, a rainha regurgita um pequeno pedaço de fungo que coletou antes do voo nupcial e manteve em uma cavidade da cabeça. Este fungo é o início do cultivo que servirá de alimento para os indivíduos da colônia durante toda a vida da mesma. As primeiras formigas permanecem no interior das panelas por vinte dias, e após este período desobstruem o canal e iniciam a atividade de forrageamento. As primeiras larvas, pupas e adultos aparecem 30, 50 e 62 dias após a revoada, respectivamente.

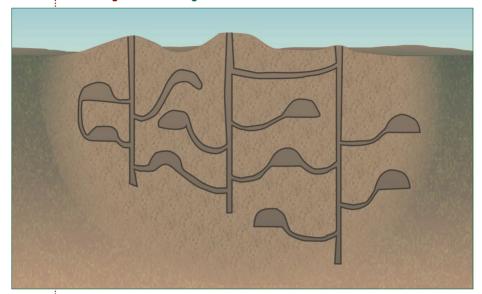
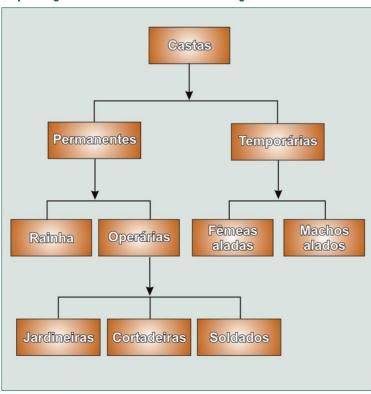

A abertura do primeiro olheiro (orifício por onde saem as operárias para cortar e transportar vegetais) se dá, em média, 87 dias após a penetração da içá no solo. O segundo aparece 14 meses após a abertura do primeiro. A partir dessa idade, o crescimento do formigueiro é acelerado e visível.

Figura 5 – As operárias saem da colônia para iniciar o corte e o transporte das plantas

O formigueiro torna-se adulto aos três anos de idade quando ocorre a primeira revoada e pode durar até 20 anos. Assim, a cada ano, novos formigueiros são formados. Os formigueiros com mais de três anos possuem vários olheiros, são profundos e apresentam panelas diferentes com alimento (fungos), ovos e crias e outras desativadas ou com lixo.

A rainha controla a formação do número de soldados, cortadeiras e jardineiras em cada estação. Os machos não participam da formação do formigueiro e morrem logo após o acasalamento. A sobrevivência da colônia depende das operárias que cuidam dos ovos, larvas, jardim de fungo, escavam as galerias, efetuam, transportam e cuidam do formigueiro.


• Formação de um quenquenzeiro

A colônia de quenquéns é menor, mas sua organização é semelhante a de saúvas. Dependendo da espécie, suas operárias podem ser semelhantes ou terem tamanhos ou cores diferentes na mesma colônia e seus reprodutores são menores que os das saúvas.

CARACTERIZAÇÃO DAS CASTAS

A população de um formigueiro é dividida em castas de acordo com a atividade desenvolvida pelos indivíduos que a compõem. A casta reprodutiva é composta pelos bitus e tanajuras produzidos apenas para revoada, quando ocorre a formação de novos ninhos. As demais formigas são divididas em castas permanentes (rainha e operárias). As operárias podem ser jardineiras, cortadeiras ou soldados. As jardineiras cuidam do cultivo do fungo e incorporam ao mesmo o material trazido pelas cortadeiras. As cortadeiras são responsáveis pela busca, corte e transporte do material vegetal para o ninho. Os soldados protegem a colônia e transportam material vegetal, quando o número das cortadeiras for reduzido.

Esquema geral da divisão de castas do formigueiro

FORRAGEAMENTO E ALIMENTAÇÃO

As formigas cortadeiras cultivam seu próprio alimento (fungo). A atividade de corte e transporte do material vegetal ocorre, normalmente, durante a noite. Esse material é transportado por trilhas marcadas quimicamente com até 400 metros de distância do ninho e 20 cm de largura. O fungo é cultivado no interior do ninho e será o alimento para todos os indivíduos da colônia. As formigas cortadeiras são seletivas preferindo cortar as partes mais novas do ápice para a base das plantas. Algumas espécies preferem plantas de folhas estreitas e outras de folhas largas, com danos mais acentuados em plantas jovens.

DIFERENCIAÇÃO DE SAÚVA E QUENQUÉM

A diferenciação entre saúvas e quenquéns pode ser feita pela morfologia das operárias, caracterização dos ninhos e distribuição geográfica.

Morfológica

Os indivíduos de quenquéns são, geralmente, menores que os de saúva, mas a principal característica morfológica que diferencia o gênero *Atta* (saúva) do *Acromyrmex* (quenquéns) é o número de espinhos no dorso das operárias, que nas saúvas são de três e nas quenquéns de quatro ou cinco.

Figura 7 – Diferenças morfológicas entre saúva e quenquém

Ninhos

Os ninhos de saúva apresentam montes de terra solta e diversos olheiros (orifícios por onde as formigas saem para buscar alimento) e são normalmente maiores.

• Ninhos de Atta (saúva)

Atta sexdens rubropilosa (saúva-limão) – os ninhos apresentam montes de terra solta irregulares e os olheiros estão localizados no fundo da cratera.

Atta laevigata (saúva-cabeça-de-vidro) – os ninhos apresentam montes arredondados de terra solta, superfície quase sempre lisa e os olheiros abrem-se sobre o monte.

Atta bisphaerica (saúva-mata-pasto) – os ninhos apresentam a terra solta espalhada, superficialmente, sobre a sede aparente do formigueiro e os olheiros abrem-se diretamente no nível da terra solta.

Atta capiguara (saúva-parda) – a terra solta é distribuída fora da área da sede aparente do ninho sem formar grande acúmulo de terra em montes.

• Ninhos de Acromyrmex (quenquém)

Os ninhos são pouco profundos constituídos por uma ou duas panelas sem montes de terra solta sobre a sede aparente, podendo ser subterrâneos, superficiais cobertos com restos vegetais ou sobre árvores. A localização destes ninhos exige maior atenção por serem pouco visíveis.

Acromyrmex subterraneus subterraneus (caiapó) – ninhos do tipo sauveirinho ou cisco.

Acromyrmex landolti balzani (boca-de-cisco) – ninhos pequenos com a entrada formada por uma torre construída com fragmentos de palhas e outros resíduos vegetais, com montículos de terra solta com forma semicircular.

Acromyrmex crassispinus (quenquém-de-cisco) – ninhos do tipo ninho-de-cisco.

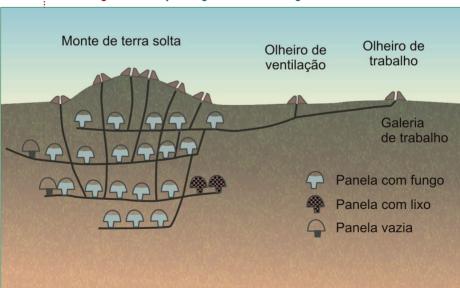
Acromyrmex niger (quenquém) – ninhos subterrâneos difíceis de serem localizados por, geralmente, não apresentarem terra solta ao redor dos olheiros

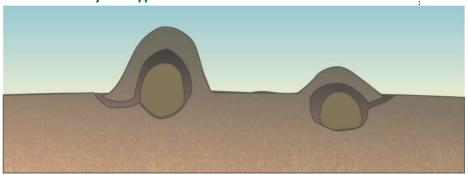
ARQUITETURA DO FORMIGUEIRO

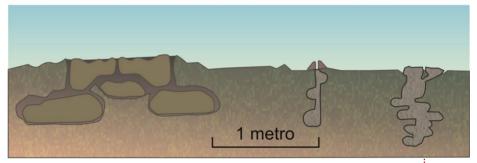
O conhecimento da arquitetura dos ninhos de formigas e o volume de panelas superficiais ou subterrâneas de formigas cortadeiras determinam a escolha e eficiência dos métodos de controle

• Formigueiro de Atta (saúva)

Na porção subterrânea, existem as câmaras (panelas) e as galerias ou canais que interligam as panelas e se dividem em duas zonas: zona morta, onde predominam as panelas de lixo, e zonas vivas, onde se encontram as panelas de fungo, ovos, larvas pupas e a rainha.




Figura 8 - Esquema geral de um formigueiro



Formigueiro de Acromyrmex (quenquém)

A morfometria dos ninhos de quenquéns é variável e, como nas saúvas, é utilizada na identificação das espécies desse grupo.

Figura 9 – Desenho esquemático de formigueiros de Acromyrmex spp.

ESPÉCIES DE FORMIGAS CORTADEIRAS

A identificação das espécies é feita segundo a morfologia das operárias e podendo ser feita pela caracterização dos ninhos e distribuição geográfica. A diferenciação dos gêneros é feita pelo número de espinhos no dorso, sendo *Atta* com três pares e *Acromyrmex* com quatro ou cinco pares.

• Atta (saúva)

O Brasil tem dez espécies e três subespécies de saúvas. As saúvas apresentam ninhos com terra solta, muito profundos,

com inúmeras panelas quando adultos e seus indivíduos são maiores que os do gênero *Acromyrmex*. As espécies de maior importância são:

Atta laevigata (saúva-cabeça-de-vidro) – cortam mono e dicotiledôneas, soldados com cabeca muito brilhante.

Atta bisphaerica (saúva-mata-pasto) – cortam monocotiledônea (plantas de folha estreita), soldados com certo brilho e dois lóbulos característicos na cabeça (cabeça dividida ao meio).

Atta capiguara (saúva-parda) – cortam preferencialmente gramíneas, soldados com corpo vermelho opaco, muito piloso.

Atta sexdens rubropilosa (saúva-limão) – operárias e soldados apresentam cheiro de limão, cortam dicotiledôneas, plantas de folhas largas, e os soldados apresentam coloração pardo-avermelhada opaca.

Saúva-limão

Acromyrmex (quenquém)

As espécies de maior importância são:

Acromyrmex subterraneus subterraneus (caiapó);

Acromyrmex crassispinus (quenquém-de-cisco);

Acromyrmex niger (quenquém);

Acromyrmex landolti balzani (boca-de-cisco).

Boca-de-cisco

2 CONHEÇA OS TIPOS DE CONTROLE DAS FORMIGAS CORTADEIRAS

As formigas cortadeiras representam um dos principais problemas nos sistemas agrícolas e silviculturais. O controle de formigas cortadeiras é feito com o manejo integrado de pragas (MIP) que consiste no uso de técnicas de combate somente quando necessárias. O controle de formigas cortadeiras é feito com diversos métodos visando economia e ganhos social e ambiental.

As técnicas de combate incluem medidas mecânicas, culturais, biológicas ou químicas e variam em função do nível de prejuízo, das condições da vegetação, das condições climáticas, do custo operacional de combate e do meio ambiente

CONTROLE MECÂNICO

O controle mecânico inclui práticas visando à destruição direta dos insetos. Os principais métodos de controle mecânico utilizados em formigas incluem escavação de sauveiros, após três a quatro meses da revoada, quando a colônia está estabelecida, a rainha está em pequena profundidade e a mortalidade natural já eliminou grande parte dos ninhos iniciais.

CONTROLE CULTURAL

O controle cultural consiste na utilização de práticas agrícolas para a redução de pragas como:

 em pastagens com alta infestação de quenquéns e sauveiros jovens com menos de 20 cm de profundidade, utiliza-se aração e gradagem sucessivas para eliminação dos mesmos.

 diversificação da vegetação, o que aumenta as populações de inimigos naturais e reduz a nidificação (construção de ninhos) por dificultar o pouso e a instalação das tanajuras.

Diversificação de vegetação

CONTROLE BIOLÓGICO

Controle biológico ocorre com ação de predadores, parasitóides ou patógenos para a redução da população de pragas. O controle biológico de formigas é importante, durante a revoada ou na fundação de formigueiros, quando seus principais inimigos naturais, pássaros, aves domésticas, aranhas, sapos, rãs, lagartos, tatus e tamanduás, realizam o controle de fêmeas aladas. Outros inimigos naturais são mosquinhas, com mais ou menos 20 espécies de parasitóides, formigas do gênero *Solenopsis* spp. (formiga-lava-pé), *Nomamyrmex* spp. (formiga-de-correição) e *Paratrechina fulva* (formiga cuiabana).

A melhoria da diversidade biológica é uma das técnicas importantes no controle biológico por reduzir a instalação de novos formigueiros.

CONTROLE QUÍMICO

O controle químico de formigas cortadeiras é feito com a aplicação de formulações químicas denominadas formicidas. Nesta cartilha, foi demonstrado apenas o controle químico, por ser mais prático e eficiente.

3 CONTROLE QUIMICAMENTE AS FORMIGAS CORTADEIRAS

O controle químico deve ser realizado tanto para as formigas saúvas (*Atta*) quanto para as formigas quenquéns (*Acromyrmex*).

3.1 CONTROLE QUIMICAMENTE A FORMIGA *ATTA* (SAÚVA)

O controle químico de formigas cortadeiras é feito, principalmente, com iscas granuladas, pós secos e produtos aplicados por termonebulização.

Precaução: Para evitar possíveis intoxicações com os produtos químicos, é de fundamental importância a utilização do EPI.

Alerta ecológico: As embalagens vazias devem ser entregues em um ponto de coleta de produtos agrotóxicos conforme legislação em vigor.

3.1.1 REÚNA O MATERIAL

Enxada, enxadão, estaca, formicida em pó, formicida líquido, isca, pá, polvilhadeira, marreta, termonebulizador, trena e FPI.

3.1.2 VISTA 0 EPI

Os principais EPI utilizados nesta operação são: botas plásticas, luvas plásticas, máscaras, óculos e macacão apropriados.

3.1.3 APLIQUE A ISCA FORMICIDA

A isca formicida é aplicada manualmente sobre a área de terra solta e nos olheiros de abastecimento.

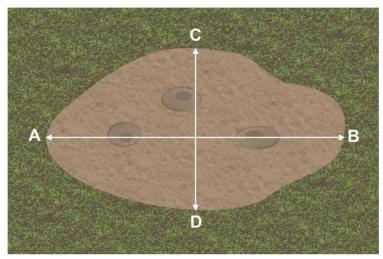
a) Localize o formigueiro

O acúmulo de terra solta caracteriza a presença de formigueiros.

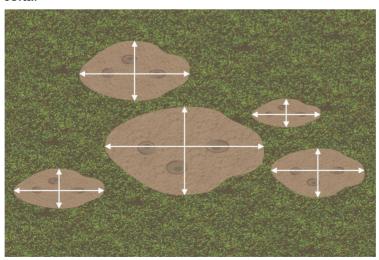
b) Confirme a atividade do formigueiro

A confirmação da atividade do formigueiro é feita pela observação da movimentação de formigas, terra recentemente escavada e folhas recentemente cortadas sobre a terra solta ou pela introdução de uma haste vegetal no interior do ninho para forçar a saída

de formigas. Quando não for observada a movimentação de formigas, fazer a remoção de terra solta até expor cinco olheiros. O formigueiro será considerado inativo se não sair formigas de qualquer um desses olheiros.


c) Meça a área do formigueiro

A medição da área do formigueiro é feita por dois métodos: área total de terra solta e área estratificada, sendo as dosagens dos inseticidas baseadas nessas áreas.


· Meça a área pelo método total de terra solta

Calcula-se a área total do sauveiro pela resultante da multiplicação do maior comprimento pela maior largura dos montes de terra solta.

• Meça pela área estratificada de terra solta

Calcula-se a área total do sauveiro pela resultante da soma das áreas individuais de cada montículo de terra solta.

d) Calcule a área

O cálculo da área total do sauveiro é feito pela multiplicação do comprimento pela largura do formigueiro ou pela soma da multiplicação do comprimento pela largura de cada monte de terra solta do formigueiro.

e) Calcule a quantidade de isca formicida

A quantidade de isca formicida a ser aplicada é calculada conforme a área do formigueiro e a dosagem recomendada pelo fabricante do produto.

f) Distribua a isca formicida

A isca formicida deve ser distribuída, uniformemente, sobre a área de terra solta e nos olheiros de abastecimento para as formigas cabeça-de-vidro e limão.

Para as formigas mata-pasto, a isca deve ser distribuída uniformemente em olheiros de abastecimento.

g) Avalie a eficiência do controle

A eficiência de controle é avaliada observando se houve carregamento de iscas e/ou devolução nas primeiras 24 horas após a aplicação, e se houve paralisação da

atividade de corte de plantas e de movimentação de formigas em até 15 dias. Caso não haja eficiência, reaplicar o formicida após 90 dias, preferencialmente de outra marca comercial para o controle de formigas.

Atenção: Para maior eficiência do processo de controle de formigas, somente deve ser aplicada a dosagem recomendada pelo fabricante de produtos registrados no Ministério da Agricultura, Pecuária e Abastecimento (Mapa).

3.1.4 APLIQUE O FORMICIDA EM PÓ

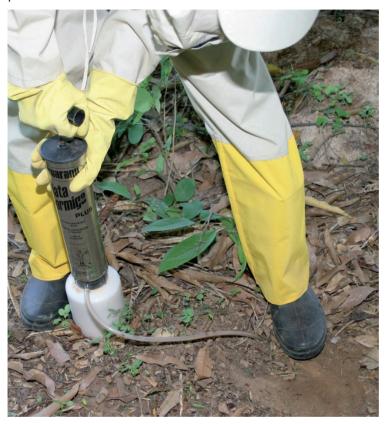
A aplicação de formicida em pó é realizada com polvilhadeiras diretamente nos olheiros de formigueiros pequenos (até 3 m²).

a) Localize um olheiro ativo do formigueiro

Atenção: Caso não localize o olheiro ativo, remova a terra solta para localizar o olheiro.

b) Abasteça a polvilhadeira com o formicida em pó

c) Introduza a mangueira da polvilhadeira no olheiro



d) Feche com terra a área ao redor da mangueira da polvilhadeira

e) Aplique o formicida

Para aplicar o formicida, deve-se acionar o êmbolo da polvilhadeira em todo o curso.

Atenção: Nesta operação, é necessária a presença de outra pessoa para, simultaneamente, tampar os olheiros com saída de pó, para evitar que o formicida aplicado saía do formigueiro.

Precaução: 1 – Durante a aplicação não se deve comer ou beber, evitando a contaminação do aplicador.

2 – Nunca desobstruir o cano de aplicação com a boca, evitando contaminação do aplicador.

f) Repita a operação em outros olheiros abertos do mesmo formigueiro

g) Repita as operações para os demais formigueiros

h) Verifique a eficiência do tratamento

Formigueiro sem movimentação

Atenção: Caso constate a movimentação de formigas após 60 dias, aplicar novamente o formicida em pó, para eliminar o formigueiro.

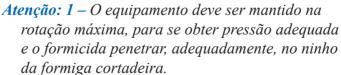
3.1.5 FAÇA A TERMONEBULIZAÇÃO

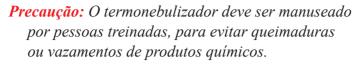
A termonebulização consiste em aplicar, no interior do formigueiro, o formicida líquido transformado em fumaça através de um termonebulizador.

a) Localize o formigueiro

b) Transporte o equipamento até o olheiro ativo

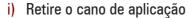
c) Abasteça o termonebulizador com combustível


d) Coloque o formicida


e) Introduza o cano de aplicação no olheiro escolhido

f) Acione o equipamento

2 – Nesta operação, é necessária a presença de outra pessoa para, simultaneamente, tampar os olheiros com saída de fumaça, para evitar que o formicida aplicado saía do formigueiro.


Alerta ecológico: A manutenção do termonebulizador deverá ser feita corretamente evitando vazamentos de combustível e a contaminação do meio ambiente.

g) Mantenha o equipamento funcionando até a fumaça retornar pelo olheiro de aplicação

h) Reduza a rotação do equipamento

j) Tape o olheiro, batendo com a enxada

- k) Repita a operação em olheiros abertos do mesmo formigueiro até obter saída de fumaça e todos os olheiros serem tapados
- I) Repita as operações para os demais formigueiros

m) Verifique a eficiência do tratamento

A eficiência do tratamento pode ser verificada a cada 30 dias pela movimentação de formigas ou terra solta recentemente removida. Caso isso seja constatado, deve-se aplicar novamente o formicida, para eliminar o formigueiro.

3.2 CONTROLE QUIMICAMENTE A FORMIGA ACROMYRMEX (QUENQUÉM)

A forma e a arquitetura dos ninhos de quenquéns são variáveis e seu tamanho é normalmente menor que os de saúvas.

Precaução: Para evitar possíveis intoxicações com os produtos químicos, é de fundamental importância a utilização do EPI.

Alerta ecológico: As embalagens vazias devem ser entregues em um ponto de coleta de produtos agrotóxicos conforme legislação em vigor.

3.2.1 REÚNA O MATERIAL

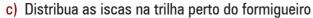
Enxada, enxadão, estaca, formicida em pó, isca, pá, polvilhadeira, marreta, trena e EPI.

3.2.2 VISTA 0 EPI

Os principais EPI utilizados nesta operação são: botas plásticas, luvas plásticas, máscaras, óculos e macacão apropriados.

3.2.3 APLIQUE ISCA FORMICIDA

No combate a quenquéns, as formulações das iscas granuladas são as mesmas utilizadas para as saúvas. No entanto, devem ser de granulometria menor e, portanto, mais apropriadas para serem carregadas pelas quenquéns.



a) Localize o formiqueiro

b) Distribua as iscas nos olheiros do formigueiro

A quantidade de isca formicida a ser aplicada é calculada conforme a área do formigueiro, seguindo os mesmos passos utilizados nas formigas saúvas, e a dosagem recomendada pelo fabricante do produto.

d) Repita a operação nos outros formigueiros

e) Verifique a eficiência do tratamento

Atenção: Caso constate a movimentação de formigas após 60 dias, aplicar novamente o formicida, para eliminar o formigueiro.

3.2.4 APLIQUE O FORMICIDA EM PÓ

A aplicação de formicida em pó é realizada com polvilhadeiras diretamente sobre o fungo em ninhos superficiais ou em olheiros de quenquenzeiros subterrâneos.

a) Aplique o formicida em pó nos ninhos superficiais

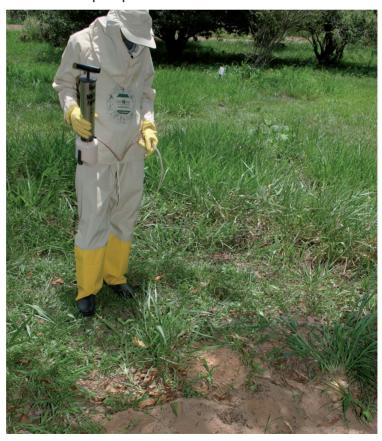
Os ninhos superficiais de quenquéns são compostos por uma câmara escavada no solo onde são encontrados o fungo e as formigas. Essa câmara é coberta por uma massa de restos vegetais (camada de lixo).

· Localize o quenquenzeiro

Abasteça a polvilhadeira com o formicida

 Remova a camada de lixo sobre o ninho até

 Acione o êmbolo da polvilhadeira em todo o seu curso por dez vezes distribuindo o formicida sobre a colônia de fungo


- · Repita as operações nos demais quenquenzeiros
- · Verifique a eficiência do tratamento

A eficiência do tratamento pode ser verificada após 30 dias pela movimentação de formigas no quenquenzeiro. Caso constate sua presença, deve-se aplicar novamente o formicida, para eliminar o quenquenzeiro.

b) Aplique o formicida em pó nos ninhos subterrâneos

Os ninhos subterrâneos de quenquéns apresentam canais como os de saúvas que se ligam a câmaras sob o solo onde o fungo é cultivado e as formigas são encontradas.

· Localize o quenquenzeiro

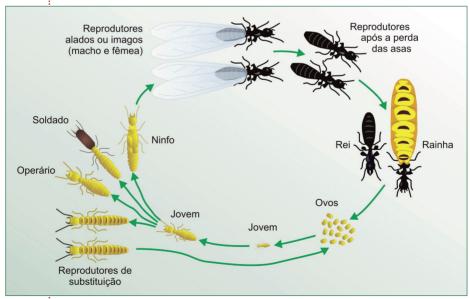
• Introduza a mangueira da polvilhadeira no olheiro

 Vede com terra a área ao redor da mangueira da polvilhadeira

 Acione o êmbolo da polvilhadeira, por 10 vezes, em todo o seu curso

Atenção: Nesta operação, é necessária a presença de outra pessoa para, simultaneamente, tampar os olheiros com saída de fumaça, para evitar que o formicida aplicado saía do formigueiro.

• Verifique a eficiência do tratamento


Atenção: Caso constate a movimentação de formigas após 30 dias, aplicar novamente o formicida, para eliminar o quenquenzeiro.

CONTROLAR OS CUPINS

Os cupins são insetos sociais que apresentam castas reprodutoras e não reprodutoras, vivendo em colônias permanentes chamadas de termiteiros ou cupinzeiros. São mastigadores e se desenvolvem por paurometabolia (ovo-ninfa-adulto), constituindo importante grupo de insetos daninhos às pastagens. Os indivíduos adultos dos cupins podem ser reprodutores sexuados alados ou ápteros e estéreis, operários e soldados (Fig. 12, ciclo de vida).

Figura 12 — Ciclo de desenvolvimento de cupins, mostrando as diferentes castas.

Fonte: Berti Filho (1993).

Anualmente, ocorre nas colônias de cupins um fenômeno conhecido como revoada, caracterizado pelo surgimento dos indivíduos reprodutores alados (siriris ou aleluias). Após a cópula, machos e fêmeas (agora ápteras – reis e rainhas) serão responsáveis pelo estabelecimento de um novo ninho. Ao contrário das formigas, o casal real permanece na colônia com cópulas periódicas.

1 CONHEÇA OS CUPINS

Os cupins são insetos sociais que podem se alimentar de raízes, cortar plantas cultivadas, além de construir inconvenientes montículos em pastagens e decompor o cerne de plantas.

CARACTERIZAÇÃO DOS CUPINS

Cupins que danificam plantas constroem ninhos sobre a superfície do solo, sendo conhecidos como cupins de montículo, ou no interior do solo, não visíveis na superfície, comuns em ambientes agrícolas, compreendendo as espécies de cupins subterrâneos.

Cupim de montículo

As duas espécies mais conhecidas do cupim de montículo são: Cornitermes cumulans e Cornitermes bequaerti da família Termitidae.

Os ninhos dessas espécies são montículos com formato variado de 50 a 100 cm de altura; câmara externa de terra cimentada com

Cornitermes cumulans

Cornitermes bequaerti

saliva, de 6 a 10 cm de espessura; parte interna de celulose e terra, menos dura, com galerias horizontais superpostas e separadas por paredes verticais, revestidas por camada escura.

Ocupam espaço na pastagem, dificultam tratos culturais e o manejo das pastagens (queda no rendimento das máquinas).

Cupim subterrâneo

As espécies mais importantes de cupim subterrâneo são: Heterotermes tenuis e Heterotermes longiceps da família Rhinotermitidae.

Os ninhos destas espécies são subterrâneos e difusos e suas operárias são pequenas e esbranquiçadas.

Provocam danos às raízes, colo e caule prejudicando o desenvolvimento das plantas; são nocivos à cultura da cana-de-açúcar por reduzirem o poder germinativo dos toletes e prejudicarem o desenvolvimento das rebrotas (soqueiras).

Essas espécies de cupins podem apresentar ninhos subterrâneos sem sinais na superfície ou terra solta na superfície do solo. Este último grupo é denominado cupim de terra solta.

• Cupim de terra solta

As principais espécies de cupim de terra solta são: Syntermes molestus, Syntermes obtusus e Syntermes insidians.

Apresentam ninhos subterrâneos e pequenas comunicações entre eles e destes com o exterior por canais estreitos e tortuosos que se abrem como "olheiros" em um raio de até cinco a oito metros da colônia na superfície do solo.

Cortam gramíneas ao nível do solo, em ataques localizados, prejudicando a rebrota e raiz, causando o ressecamento e a morte das plantas.

Syntermes sp.

2 CONTROLE OS CUPINS

O controle de cupins objetiva evitar danos às plantas, possibilitar o cultivo em áreas infestadas e melhorar a produtividade e a longevidade de pastagens.

Há diversos métodos de controle, porém a grande maioria está associada às medidas culturais e o conhecimento da área que se deseja controlar. Por exemplo, o levantamento preventivo pode evitar o estabelecimento de pastagem em regiões com alta densidade de cupins subterrâneos.

Para o controle de cupins subterrâneos, estão em andamento alguns experimentos utilizando iscas atrativas de papelão impregnadas com cupinicida.

O controle dos cupins de montículo e de terra solta deve ser feito entre 30 e 60 dias antes do preparo do solo e o plantio feito em época chuvosa e com adubação adequada, para acelerar o desenvolvimento das plantas e reduzir os danos causados por esses insetos.

2.1 CONTROLE O CUPIM DE MONTÍCULO COM CUPINICIDA GRANULADO

Os cupins de montículo são controlados com a aplicação direta de produtos químicos por termonebulização, pós ou granulados.

O princípio ativo é formulado como grânulos aplicados no interior da colônia de cupins.

Precaução: Para evitar possíveis acidentes de trabalho, é de fundamental importância a utilização do EPI.

Alerta ecológico: As embalagens vazias devem ser entregues em um ponto de coleta de produtos agrotóxicos conforme legislação em vigor.

2.1.1 REÚNA O MATERIAL

Cupinicida em pó ou granulado, pá, enxadão ou enxada.

2.1.2 VISTA 0 EPI

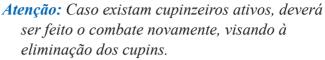
Os principais EPI utilizados nesta operação são: botas plásticas, luvas plásticas, máscaras, óculos e macacão apropriados para aplicação do cupinicida, perneira e luva para quebrar a porção superior do cupim.

2.1.3 LOCALIZE 0 CUPINZEIRO

2.1.4 REMOVA UMA PORÇÃO DE 20 CM DA PARTE SUPERIOR DO CUPINZEIRO

2.1.5 ABASTEÇA
O DOSADOR
COM O
CUPINICIDA

2.1.6 DISTRIBUA UNIFORMEMENTE O CUPINICIDA EM TODA A ÁREA ABERTA DO CUPINZEIRO


2.1.8 REPITA AS OPERAÇÕES PARA OS OUTROS CUPINZEIROS

2.1.9 AVALIE A EFICIÊNCIA DO TRATAMENTO

Para avaliar a eficiência do tratamento, deve ser removida uma porção de 20 cm da parte superior de 10 cupinzeiros, após quatro meses, verificando se há movimentação de cupins.

Destruição dos cupinzeiros

2.2 CONTROLE O CUPIM DE TERRA SOLTA POR TERMONEBULIZAÇÃO

Os montes de terra solta sobre o ninho e o hábito de corte de plantas destes cupins se assemelham aos de formigas saúvas. O controle destes cupins pode ser feito utilizando termonebulização e pó seco.

O uso da termonebulização visa atingir as panelas destes cupins, que são mais profundas.

Precaução: Para evitar acidentes na manipulação do termonebulizador, o operador deve utilizar os EPI corretamente.

Alerta ecológico: As embalagens vazias devem ser entregues em um ponto de coleta de produtos agrotóxicos conforme legislação em vigor.

2.2.1 REÚNA O MATERIAL

Cupinicida líquido e em pó, pá, enxadão ou enxada, e termonebulizador.

2.2.2 VISTA 0 EPI

Os principais EPI utilizados nesta operação são: botas plásticas, luvas plásticas, máscaras, óculos e macacão apropriados.

2.2.3 LOCALIZE O CUPINZEIRO

2.2.4 TRANSPORTE O
EQUIPAMENTO
ATÉ O OLHEIRO
ATIVO

2.2.5 ABASTEÇA O TERMONEBULIZADOR COM COMBUSTÍVEL

2.2.6 COLOQUE O CUPINICIDA

2.2.7 INTRODUZA O CANO DE APLICAÇÃO NO OLHEIRO ESCOLHIDO

2.2.8 ACIONE O EQUIPAMENTO

Atenção: 1 – O equipamento deve ser mantido na rotação máxima, para melhorar a penetração do cupinicida na colônia do cupim.

2 – Nesta operação, é necessária a presença de outra pessoa para, simultaneamente, tampar os olheiros com saída de fumaça, para evitar que o cupinicida aplicado saía do cupinzeiro.

Precaução: O termonebulizador deve ser manuseado por pessoas treinadas, para evitar queimaduras ou vazamentos de produtos químicos.

Alerta ecológico: A manutenção do termonebulizador deve ser feita corretamente evitando vazamentos de combustível e contaminação do meio ambiente.

2.2.9 MANTENHA O EQUIPAMENTO FUNCIONANDO ATÉ A FUMAÇA RETORNAR PELO OLHEIRO DE APLICAÇÃO

2.2.10 REDUZA A
ROTAÇÃO DO
EQUIPAMENTO

2.2.11 RETIRE O CANO DE APLICAÇÃO

2.2.12 TAPE O OLHEIRO, BATENDO COM A ENXADA

2.2.13 REPITA AS OPERAÇÕES PARA OS DEMAIS CUPINZEIROS

CONTROLE DE FORMIGAS CORTADEIRAS E CUPINS EM PASTAGEM

B I B L I O G R A F I A

- COUTO, L.; ZANUNCIO, J. C.; ALVES, J.; CAMPINHOS JÚNIOR, E.; SORESINI, L.; VARGAS, J. A. Avaliação da eficiência e custo do controle de *Atta sexdens rubropilosa* através do sistema termonebulizador na região de Aracruz, ES. *Revista Árvore Brasil*, v. 1, n. 1, p. 9-16, 1977.
- CRUZ, A. P.; ZANUNCIO, J. C.; PEREIRA, J. M. M.; ZANETTI, R. Eficiencia de cebos granulados a base de sulfluramida y de clorpirifós en el control de *Acromyrmex octospinosus* (Hymenoptera: Formicidae) en el trópico húmedo. *Revista Colombiana de Entomologia*, v. 26, n. 1-2, p. 67-69, 2000.
- DELLA LUCIA T. M. C.; ANJOS, N.; ZANUNCIO J. C. Controle de formigas cortadeiras. 2000. 54 p.
- PODEROSO, J. C. M.; RIBEIRO, G. T.; GONÇALVES, G. B.; MENDONÇA, P. D.; POLANCZYK, R. A.; ZANETTI, R.; SERRÃO, J. E.; ZANUNCIO, J. C. Nest and foraging characteristics of *Acromyrmex landolti balzani* (Hymenoptera: Formicidae). In Northeast Brazil. *Sociobiology*, v. 54, p. 361-371, 2009.
- SANTOS, G. P.; GOMES, J.; ZANUNCIO, J. C.; BRANDI, R. Controle de saúvas pelo sistema de termonebulização na região de Timóteo, MG. *Brasil Florestal*, v. 9, n. 38, p. 18-20, 1979.
- ZANETTI, R.; VILELA, E. F.; ZANUNCIO, J. C.; LEITE, H.; FREITAS, G. Influência da espécie cultivada e da vegetação nativa circundante na densidade de sauveiros em eucaliptais. *Pesquisa Agropecuária Brasileira*, v. 35, n. 10, p. 1911-1918, 2000.
- ZANETTI, R.; CARVALHO G. A.; SANTOS A.; SOUZA-SILVA, A.; GODOY, M. S. Manejo integrado de formigas cortadeiras. Lavras (MG): UFLA, 2002. 17 p. (Texto acadêmico).

CONTROLE DE FORMIGAS CORTADEIRAS E CUPINS EM PASTAGEM

BIBLIOGRAFIA

- ZANETTI, R.; ZANUNCIO, J. C.; SOUZA-SILVA, A.; MENDONÇA, L. A.; MATTOS, J. O. S.; RIZENTAL, M. S. Eficiência de produtos termonebulígenos no controle de *Atta laevigata* (Hymenoptera: Formicidae) em plantio de eucalipto. *Ciência e Agrotecnologia*, v. 32, n. 1, p. 1313-1316, 2008.
- ZANUNCIO, J. C.; MAGESTE, G.; PEREIRA, J. M. M.; ZANETTI, R. Utilización del cebo Mirex-S (Sulfluramida 0.3%) para el control de Atta sexdens rubropilosa (Hymenoptera: Formicidae) en área estratificada de hormigueros. Revista Colombiana de Entomologia, Bogotá, v. 26, n. 3-4, p. 157-160, 2000.
- ZANUNCIO, T. V.; ZANUNCIO, J. C.; SANTOS, G. P.; FIRME, D. Uso de isca granulada com sulfluramida 0,3% no controle de *Atta sexdens rubropilosa* Forel, 1908 (Hymenoptera: Formicidae). *Revista Cerne*, Lavras, v. 3, n. 1, p. 161-169, 1997.
- ZANUNCIO, J. C.; VILELA, E. F. Emprego de iscas granuladas e pós secos no controle da *Atta laevigata*, no município de Curvelo, MG. *Revista Árvore*, v. 4, n. 2, p. 221-226, 1980.
- ZANUNCIO, J. C.; ZANETTI, R.; PRATISSOLI, D. Spatial distribution of nests of the leaf cutting ant *Atta sexdens rubropilosa* (Hymenoptera: Formicidae) in plantations of *Eucalyptus urophylla* in Brazil. *Sociobiology*, Estados Unidos, v. 39, n. 2, p. 231-242, 2002.
- ZANUNCIO, J. C.; CRUZ, A. P.; OLIVEIRA, H.; GOMES, F. S. Controle de *Acromyrmex laticeps nigrosetosus* (Hymenoptera: Formicidae), em eucaliptal no Pará, com iscas granuladas com sulfluramida ou clorpirifós. *Acta Amazonica*, v. 29, n. 4, p. 65-70, 1999.
- ZANUNCIO, J. C.; LARANJEIRO, A. J.; DESOUZA, O. Controle de *Acromyrmex subterraneus molestans Santschi* (Hymenoptera: Formicidae) com sulfluramida. *Sociedade Brasileira de Entomologia*, v. 25, n. 3, p. 383-388, 1996.

AGRADECIMENTOS

À Fazenda Experimental da UFMT/FAMEV, localizada em Santo Antônio de Lerverger (MT), por ter disponibilizado os auxiliares, os materiais e os cenários para a produção fotográfica desta cartilha.

